ACADEMIC SESSION: 2024-25

Discipline : Electrical Engineering	Semester : 4th	Name of the Teaching Faculty : KIRAN KUMAR BHOI
Subject : ENERGY CONVERSION- I	No. of days / week class allotted	Semester From date: 4/02/2025 to 17/05/2025
Week manager vd and the	Class Day	Theory/ Practical Topics
(Fr. John J. C.)	signite to less but you	Operating principle of generator, Constructional features of DC machine.
1 ST	2 nd	Yoke, Pole & field winding, Armature, Commutator
	reme 3rd to slou	Armature winding, back pitch, Front pitch, Resultant pitch and commutator- pitch
	4 th	Simple Lap and wave winding, Dummy coils.
10/17A	nert to a 1st mars the	Different types of D.C. machines (Shunt, Series and Compound)
2 ND	2 nd	Derivation of EMF equation of DC generators. (Solve problems)
2-	3 rd	Losses and efficiency of DC generator. Condition for maximum efficiency.
	4 th	numerical problems.
3 RD	of Mansft trees	Armature reaction in D.C. machine
	2 nd	Commutation and methods of improving commutation.
	3 rd	Role of inter poles and compensating winding in commutation
	4 th	Characteristics of D.C. Generators
MOREOUS TOWN DESTINA	SECRET SH 1st CHORNE	Application of different types of D.C. Generators
To comband bus sold	2nd parket	Concept of critical resistance and critical speed of DC shunt generator
	3 rd	Conditions of Build-up of emf of DC generator.
	Δth	Parallel operation of D.C. Generators.
emaktion in Inchication STH a to noticity	1 st	Uses of D.C generators.
	2 nd	Basic working principle of DC motor
	3rd	Significance of back emf in D.C. Motor.
	4 th	Voltage equation of D.C. Motor and condition for maximum power output
	1 st Aciges	solve problems
6 TH	2 nd	Derive torque equation (solve problems)
Entransition (Editor)	3rd	Characteristics of shunt, series and compound motors and their application.

	4 th	Starting method of shunt, series and compound motors
7 TH	1 st	Speed control of D.C shunt motors by Flux control method. Armature voltage Control method.
	2 nd	Solve problems
	3rd	Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method
	4 th	Determination of efficiency of D.C. Machine by Brake test method(solve numerical problems)
8 TH	1 st	Determination of efficiency of D.C. Machine by Swinburne's Test method(solve numerical problems)
	2 nd	Losses, efficiency and power stages of D.C. motor.
	3 rd	(solve numerical problems)
	4 th	Uses of D.C. motors
9 TH	1 st	Working principle of transformer.
	2 nd	Constructional feature of Transformer, Arrangement of core & winding in different types of transformer.
	3rd	Brief ideas about transformer accessories such as conservator, tank, breather, and explosion vent etc
	4 th	Explain types of cooling methods
10 TH	1 st	State the procedures for Care and maintenance.
	2 nd	EMF equation of transformer
	3rd	Ideal transformer voltage transformation ratio
	4 th	Operation of Transformer at no load, on load with phasor diagrams
	1 st	Equivalent Resistance, Leakage Reactance and Impedance of transformer
11 TH	2 nd	To draw phasor diagram of transformer on load, with windin Resistance and Magnetic leakage with using upf, leading pf and lagging pf load.
	3rd	To explain Equivalent circuit and solve numerical problems
	4 th	Approximate & exact voltage drop calculation of a
		Transformer.
12 th	1 st	Regulation of transformer.
	2 nd	Different types of losses in a Transformer. Explain Open circuit and Short Circuit test.(Solve numerical problems)
	3rd	.(Solve numerical problems)

	4 th	Explain Efficiency, efficiency at different loads and power factors
13 th	1 st	condition for maximum efficiency (solve problems)
	2 nd	Explain All Day Efficiency (solve problems)
	3 rd	Determination of load corresponding to Maximum efficiency
	4 th	6 Parallel operation of single phase transformer.
14 th	1 st	Constructional features of Auto transformer
	2 nd	Working principle of single phase Auto Transformer
	3rd	Comparison of Auto transformer with an two winding transformer (saving of Copper)
	4 th	Uses of Auto transformer
15 th	1 st	Explain Tap changer with transformer (on load and off load condition)
	2 nd	Explain Current Transformer and Potential Transformer
	3 rd	Define Ratio error, Phase angle error, Burden.
	4 th	1.3 Uses of C.T. and P.T.

Kiran Kumar Bhoi Lect. Stage II

Electrical Engg.

Head of the Department Electrical Engg.

Academic Co-ordinator